Mendel

- What was Mendel's contribution to our understanding of Heredity?
- What is the Law of Segregation?
- What is the Law of Independent. Assortment?
- · What is a punnett square and how is it used to illustrate the principles of inheritance?

Human Mendelian Traits

- OMIM estimates that about 20,000 genes are inherited in a simple Mendelian way.
- · Many blood charateristics and diseases and disorders - some simple physical traits
- Examples: Sickle cell, tented eyebrows, hitchhiker's thumb
- · Most human "traits" are more complicated, but particles of inheritance - genes - are passed on in a simple Mendelian way

Terminology

genotype phenotype gene allele locus

DNA chromosomes bases

of a gene on a chromosome Allele= alternative form of a locus homozygous= having the same allele at the locus on both chromosomes heterozygous= having different alleles at the locus on both chromosomes

Heritability a 3 Part question

- How come we resemble our parents? That is, how is our heritable information passed from generation to generation?
- How does the genetic code create a characteristic?
- Where does variation in the code come from?

×

Human Karyotype

è

- MITOSIS somatic cell division
- MEIOSIS gametic cell division

7

Mitosis

Heritability - a 3 Part question

- How come we resemble our parents? That is, how is our heritable information passed from generation to generation?
- How does the genetic code create a characteristic?
- Where does variation in the code come from?

Variation comes from

- Recombination
- Crossing Over
- Mutation

...

Recombination

2 chromosomes x 2 possibilities for each =

4 possible combinations

14

Recombination

23 chromosomes

x
2 possibilities for each

=
2 to the 23rd power

=

15

Recombination

23 chromosomes x 2 possibilities for each = 2 to the 23rd power = 8,388,608

_	
_	

Variation comes from

- Recombination
- Crossing Over
- Mutation

12

Chromosomal mutations Down's syndrome -21 Klinefelter's syndrome -Sex Turner's syndrome - sex William's Syndrome - 7

Klinefelter's Karyotype

Down's Karyotype

2

Trisomy 13

-small head small eyes cleft lip ear shape palm differences extra fingers/toes heart defects kidney defects etc.

23

Variation comes from

- Recombination
- Crossing Over
- Mutation

20

Mutation

- Change in base sequence of DNA
- Occurs during replication stage of meiosis (or mitosis)
- MAY change the amino acid change and therefore the protein

Kinds of Mutations

- Substitution replace one base with another
- Frame Shift -
 - Insertion- an extra base gets pulled in
 - Deletion- a base gets omitted

28

How common is mutation?

- · happens all the time
- assume a rate of one in a million per locus per gamete
- assume approximately 50,000 loci
- (1 x 10⁻⁶) x (5 x 10⁻⁴) = 0.05
 5% of gametes have a mutation
- an individual is combination of two gametes
 2 x 0.05 = 0.1 10%