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Statically Indeterminate Structures

At the beginning of the course, we learned that a stable 
structure that contains more unknowns than independent 
equations of equilibrium is Statically Indeterminate.

• Redundancy (several members 
must fail for the structure to 
become unstable);

• Often maximum stresses is 
certain members are reduced;

• Usually deflections are 
reduced.

Advantages Disadvantages

• Connections are often more 
expensive;

• Finding forces and deflections 
using hand analysis is much 
more complicated.



Steps in Solving an Indeterminate 
Structure using the Force Method

Determine degree of Indeterminacy  
Let n =degree of indeterminacy

(i.e. the structure is indeterminate to the nth 
degree)

Define Primary Structure 
and the n Redundants

Define the Primary 
Problem

Solve for the n
Relevant 

Deflections in 
Primary Problem

Define the n
Redundant 
Problems

Solve for the n
Relevant Deflections 
in each Redundant 

Problem

Write the n
Compatibility 
Equations at 

Relevant Points

Solve the n
Compatibility 

Equations to find the 
n Redundants

Use the Equations 
of Equilibrium to 

solve for the 
remaining 
unknowns

Chapter 3

Chapters 3,4,5  then 7 or 8

Construct 
Internal Force 

Diagrams 
(if necessary)

Chapter 3

Chapters 3,4,5  then 7 or 8

Chapters 3,4,5



Force Method of Analysis
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Define Primary Structure and Redundants
• Remove all applied loads from the actual structure;
• Remove support reactions or internal forces to define a primary structure;
• Removed reactions or internal forces are called redundants;
• Same number of redundants as degree of indeterminacy
• Primary structure must be stable and statically determinate;
• Primary structure is not unique – there are several choices.
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Define and Solve the Primary Problem

• Apply all loads on actual structure to the primary structure;
• Define a reference coordinate system;
• Calculate relevant deflections at points where redundants were 

removed.
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Define and Solve the Redundant Problems
• There are the same number of redundant problems as degrees of indeterminacy;
• Define a reference coordinate system;
• Apply only one redundant to the primary structure;
• Write the redundant deflection in terms of the flexibility coefficient and the 

redundant for each redundant problem.
• Calculate the flexibility coefficient associated with the relevant deflections for 

each redundant problem;
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Define and Solve the Redundant Problems
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Compatibility Equations

Δ# + Δ## + Δ#" = 0

Compatibility at Point C

Δ" + Δ"# + Δ"" = 0

Compatibility at Point D

Compatibility Equations in terms of 
Redundants and Flexibility Coefficients

∆# + 𝐶'𝛿## + 𝐷'𝛿#" = 0
∆" + 𝐶'𝛿"# + 𝐷'𝛿"" = 0

Solve for Cy and Dy



The Force 
Method is 

Based on the 
Principle of 

Superposition
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Example Problem
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For the indeterminate beam 
subject to the point load, P, 
find the support reactions at 
A and C. EI is constant. 
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Define Primary Structure and Redundant
• Remove all applied loads from the actual structure;
• Remove support reactions or internal forces to define a primary structure;
• Removed reactions or internal forces are called redundants;
• Same number of redundants as degree of indeterminacy
• Primary structure must be stable and statically determinate;
• Primary structure is not unique – there are several choices.
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Define and Solve the Primary Problem

• Apply all loads on actual structure to the primary structure;
• Define a reference coordinate system;
• Calculate relevant deflections at points where redundants were 

removed.
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Define and Solve the Redundant Problem
• There are the same number of redundant problems as degrees of indeterminacy;
• Define a reference coordinate system;
• Apply only one redundant to the primary structure;
• Write the redundant deflection in terms of the flexibility coefficient and the 

redundant for each redundant problem.
• Calculate the flexibility coefficient associated with the relevant deflections for 

each redundant problem;
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Compatibility Equation at Point A

𝜃/ + 𝜃// = 0

Compatibility at Point A

Compatibility Equation in terms of 
Redundant and Flexibility Coefficient
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Find Remaining Unknowns
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Draw V and M Diagrams of the Beam
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Superposition of Primary and Redundant Problems
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