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Statically Indeterminate Structures

At the beginning of the course, we learned that a stable
structure that contains more unknowns than independent
equations of equilibrium is Statically Indeterminate.

Advantages

Disadvantages

* Redundancy (several members
must fail for the structure to
become unstable);

* Often maximum stresses 1s
certain members are reduced;

* Usually deflections are
reduced.

e Connections are often more
expensive;

* Finding forces and deflections
using hand analysis 1s much
more complicated.




Steps 1n Solving an Indeterminate

Structure using the Force Method
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Force Method of Analysis

Consider the beam I

Beam 1s stable

X=5

3n=3(1)=3

Statically Indeterminate
to the 2" degree




Define Primary Structure and Redundants

Remove all applied loads from the actual structure;

Remove support reactions or internal forces to define a primary structure;
Removed reactions or internal forces are called redundants;

Same number of redundants as degree of indeterminacy

Primary structure must be stable and statically determinate;
Primary structure is not unique — there are several choices.
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Define and Solve the Primary Problem

Apply all loads on actual structure to the primary structure;
Define a reference coordinate system;

Calculate relevant deflections at points where redundants were
removed.

) g |

A B C D E 7

Ac  Ap




Detine and Solve the Redundant Problems

There are the same number of redundant problems as degrees of indeterminacy;
Define a reference coordinate system;

Apply only one redundant to the primary structure;

Write the redundant deflection in terms of the flexibility coefficient and the
redundant for each redundant problem.

Calculate the flexibility coefficient associated with the relevant deflections for
each redundant problem;
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Detine and Solve the Redundant Problems

A Redundant
CD Problem 2

Dy Acp = Dy5CD
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Compatibility Equations

Compatibility at Point C

AC_I_ACC_I_ACD:O

Compatibility at Point D

AD_I_ADC_I_ADD:O

Compatibility Equations in terms of
Redundants and Flexibility Coefficients

AC + CySCC + DySCD — O
AD + Cy5DC ~+ Dy5DD — O

Solve for CDL and D
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Example Problem

For the indeterminate beam
subject to the point load, P,
find the support reactions at
A and C. EI is constant.

Beam i1s stable

X=4

3n=3(1)=3

L L
FBD 2 2
P
M, |” l
Ay TA EJ B T c *
A)' | _ | CY
[ L | L :
2 2

Statically Indeterminate
to the 15t degree




Define Primary Structure and Redundant

Remove all applied loads from the actual structure;

Remove support reactions or internal forces to define a primary structure;
Removed reactions or internal forces are called redundants;

Same number of redundants as degree of indeterminacy

Primary structure must be stable and statically determinate;

Primary structure is not unique — there are several choices.

Primary Structure Redundant
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Define and Solve the Primary Problem

Apply all loads on actual structure to the primary structure;

Define a reference coordinate system;

Calculate relevant deflections at points where redundants were

removed.
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Detine and Solve the Redundant Problem

There are the same number of redundant problems as degrees of indeterminacy;
Define a reference coordinate system;

Apply only one redundant to the primary structure;

Write the redundant deflection in terms of the flexibility coefficient and the
redundant for each redundant problem.

Calculate the flexibility coefficient associated with the relevant deflections for
each redundant problem;
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Compatibility Equation at Point A

Compatibility at Point A

HA‘l‘HAA:O

Compatibility Equation in terms of
Redundant and Flexibility Coefficient

HA + MAaAA =0

P My(-) =0
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Free Body Diagram
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Find Remaining Unknowns
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Draw V and M Diagrams of the Beam
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Superposition of Primary and Redundant Problems
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