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Work Done by Force/Moment

Work is done by a force
‘W =F 5‘ acting through and in-line
displacement
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and in-line rotation
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Recall the General Form of the
Principle of Virtual Work

Real Deformation

Virtual Loads

External Work due to Support Settlements




Consider a Beam Subjected
To General Loading

Modulus of Elasticity = £
Moment of Inertia =/
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We want to find the deflection at
point A and the slope at point B
due to the applied loads




Apply a Virtual Force to
Measure the Deflection at A

Modulus of Elasticity = £
Moment of Inertia =/
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For bending, the internal
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virtual load 1s MQ




Add the Real Loads and Examine
1 Internal Deformation due to Bending
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Can rewrite the moment-curvature relationship
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Modify the General Form of the Principle of
Virtual Work for Bending Deformation
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Real Deformation

do,

For bending deformation,
dLp =dBp and F,= M,

Virtual Load
irtual Loads WdHQ

The Principle of Virtual Work expression for

bending can be expressed as:
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Principle of Virtual Work to Measure 04
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If the bending stiffness, E1, is constant:
L 1 L
06, = | M,— dx 06 =—fMde
A7), Y E AT EL), 0




To Measure Rotational Deformation,
Apply a Virtual Moment

Modulus of Elasticity = £
Moment of Inertia =/
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For bending, the internal

virtual load 1s MQ
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Modulus of Elasticity = E
Moment of Inertia =/

From the moment-curvature relationship
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Principle of Virtual Work to Measure 0 4

Modulus of Elasticity = E
Moment of Inertia =/
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) If the bending stiffness, E1, is constant:
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Summary of Procedure for Finding Bending
Deformation Using Virtual Work

Modulus of Elasticity = £
Moment of Inertia =/
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We want to find the deflection at
point A and the slope at point B
due to the applied loads




Step 1 — Remove all loads and apply a virtual

force (or moment) to measure the deformation at
+ |the point of interest

Y

>
o
o

.
f

{

Convenient to
L set =1

From an equilibrium analysis, find the internal

bending moment function for the virtual system:
M, Q( x)




Step 2 — Replace all of the loads on the structure
and perform the real analysis
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From an equilibrium analysis, find the internal

bending moment function for the real system:
Mp(x)




Step 3 — Evaluate the virtual work product integrals

and solve for the deformation of interest

If the bending stiffness, EZ, is constant:
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Table in textbook appendix is provided to help
evaluate product integrals of this type



Table to Evaluate Virtual Work Product Integrals

Appendix Table.2
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Table is as useful tool
to evaluate product
integrals of the form:
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