
By

Team High Calibre

Kulkarni, Anuvinda

Murthy, Megha

Dattatreya, Shweta

Agenda

 Problem Statement

 Solution to the problem statement using hazelcast

 Distributed Caching

 Technologies Used

 Hazelcast

 Hibernate

 Hotwire API

 Basic workflow of the proposed system

 Execution and performance Evaluation

 Conclusion

 References

Problem Statement

 Airline Use Case - A passenger searches for flights by specifying the
source, destination, and flight date and receives the list of flights and hotel
deals for his destination.

 Problem - The search keeps hitting the Flight database very frequently.
Database is overloaded and too slow. 80% of the searches are read-only.
These read-only transactions keep hitting the database frequently thus
making the response time slow.

 Our Solution

 To reduce the load on database, deploy a distributed cache with several
nodes running in the cluster

 Cache data from database

 Cached data is distributed equally between all the nodes

 To avoid cache from ballooning, keep expiry on items.

 Old untouched flight searches with hotel deals will expire from cache, but
master data is always present in database and the hotel deals API

Distributed Caching

[Source: http://sourcedaddy.com/windows-7/how-distributed-cache-works.html]

http://sourcedaddy.com/windows-7/how-distributed-cache-works.html
http://sourcedaddy.com/windows-7/how-distributed-cache-works.html
http://sourcedaddy.com/windows-7/how-distributed-cache-works.html
http://sourcedaddy.com/windows-7/how-distributed-cache-works.html
http://sourcedaddy.com/windows-7/how-distributed-cache-works.html
http://sourcedaddy.com/windows-7/how-distributed-cache-works.html
http://sourcedaddy.com/windows-7/how-distributed-cache-works.html
http://sourcedaddy.com/windows-7/how-distributed-cache-works.html
http://sourcedaddy.com/windows-7/how-distributed-cache-works.html
http://sourcedaddy.com/windows-7/how-distributed-cache-works.html

Advantages of Distributed Caching

 High performance

 High scalability

 Reduced latency

 No single point of failure

 Session data is preserved

 Maintenance is easy

 Low cost

Technologies Used

 Hazelcast

 Hibernate

 Hotwire API

 MySql DB

 Java XPath API

Hazelcast- A brief history

 Start-up founded in 2008

 By founders - Talip Ozturk, Fuad Malikov

 Open Source product under Apache License

What is Hazelcast?

 Clustering and scalable data distribution platform for java

 In-memory data grid

Hazelcast architecture

[Source: http://www.hazelcast.com/documentation.jsp]

http://www.hazelcast.com/documentation.jsp
http://www.hazelcast.com/documentation.jsp
http://www.hazelcast.com/documentation.jsp

Hazelcast features

 Distributed java.util.{Queue, Set, List, Map}

 Distributed java.util.concurrency.locks.Lock

 Distributed java.util.concurrent.ExecutorService

 Distributed MultiMap for one to many mapping

 Distributed Topic for publish/subscribe messaging

 Distributed Indexing and Query support

 Transaction support and J2EE container integration via JCA

 Socket level encryption for secure clustersWrite-Through and Write-Behind
persistence for maps

 Java Client for accessing the cluster remotely

 Dynamic HTTP session clustering

 Support for cluster info and membership events

 Dynamic discovery, scaling, partitioning with backups, fail-over

 Web-based cluster monitoring

 How does hazelcast help?

 Auto discovery of members in the cluster

 Fault tolerant

 Redistributing of data among all nodes even upon the entry of new
node.

Hibernate

•An object-relational mapping (ORM) library for the Java language

•Hibernate is free software that is distributed under the GNU Lesser
General Public License

•Primary feature is to map Java classes to database tables (and from Java
data types to SQL data types)

•Mapping Java classes to database tables is accomplished through the
configuration of an XML

Hibernate Architecture

[Source: http://hibernate.org/docs-hib-architecture

http://hibernate.org/docs-hib-architecture
http://hibernate.org/docs-hib-architecture
http://hibernate.org/docs-hib-architecture
http://hibernate.org/docs-hib-architecture
http://hibernate.org/docs-hib-architecture
http://hibernate.org/docs-hib-architecture

Hibernate Configuration File

 hibernate.cfg.xml

 JDBC Driver class to use

 Connection to the db

 Connection Pool details

 Second level of caching

 fight_details.hbm.xml

 Mapping between the DB tables and Java classes

How does hibernate help?

 Greatly reduces complexity

 Easy configuration

 Connection pool

Hotwire API

 Hotel deals on hotwire

 Search result based on destination location

 Allows search based on multiple parameters

 location

 price

 hotel star rating

 travel dates

 length of stay

 restrict to weekend stay

 time since deal was discovered

Basic Workflow of our model

Execution & Performance Evaluation

1. Run the CacheEngine to create cluster members

2. Origin = “YUM”, destination = “LAX”, flightDate = “2011-06-29”. Set the pre-fetch to true

3. Origin = “YUM”, destination = “LAX”, flightDate = “2011-06-29”. Set the pre-fetch to false

4. Origin = “YUM”, destination = “LAX”, flightDate = “2011-06-30”. Set the pre-fetch to false

5. Origin = “YUM”, destination = “LAX”, flightDate = “2011-06-28”. Set the pre-fetch to false

6. Origin = “SJC”, destination = “JFK”, flightDate = “2011-06-29”. Set the pre-fetch to false

7. Origin = “SJC”, destination = “JFK”, flightDate = “2011-06-30”. Set the pre-fetch to false

8. Origin = “SJC”, destination = “JFK”, flightDate = “2011-06-30”. Set the pre-fetch to false

9. Origin = “SJC”, destination = “JFK”, flightDate = “2011-06-30”. Set the pre-fetch to false

10. Origin = “SJC”, destination = “JFK”, flightDate = “2011-06-30”. Set the pre-fetch to false

11. Origin = “SJC”, destination = “JFK”, flightDate = “2011-06-30”. Set the pre-fetch to false

1. Run the CacheEngine to create cluster members

2. Origin = “YUM”, destination = “LAX”, flightDate = “2011-06-29”. Set the pre-fetch to true

MySQL query - completed in [2768] milliseconds

Hotwire API query - completed in [2338] milliseconds

3. Origin = “YUM”, destination = “LAX”, flightDate = “2011-06-29”. Set the pre-fetch to false

Flight query from cache - completed in [2] milliseconds

Hotel deals from cache - completed in [3] milliseconds

4. Origin = “YUM”, destination = “LAX”, flightDate = “2011-06-30”. Set the pre-fetch to false

Flight query from cache - completed in [2] milliseconds

Hotel deals from cache - completed in [2] milliseconds

5. Origin = “YUM”, destination = “LAX”, flightDate = “2011-06-28”. Set the pre-fetch to false

Flight query from cache - completed in [2] milliseconds

Hotel deals from cache - completed in [2] milliseconds

6. Origin = “SJC”, destination = “JFK”, flightDate = “2011-06-29”. Set the pre-fetch to false

MySQL query - completed in [125] milliseconds

Hotwire API query - completed in [1119] milliseconds

Execution & Performance Evaluation…continued

 7. Origin = “SJC”, destination = “JFK”, flightDate = “2011-06-30”. Set the pre-fetch to false

MySQL query - completed in [176] milliseconds

Hotel deals from cache - completed in [3] milliseconds

8. Origin = “SJC”, destination = “JFK”, flightDate = “2011-06-30”. Set the pre-fetch to false

Flight query from cache - completed in [2] milliseconds

Hotel deals from cache - completed in [2] milliseconds

9. Origin = “SJC”, destination = “JFK”, flightDate = “2011-06-30”. Set the pre-fetch to false

Flight query from cache - completed in [3] milliseconds

Hotel deals from cache - completed in [3] milliseconds

10. Origin = “SJC”, destination = “JFK”, flightDate = “2011-06-30”. Set the pre-fetch to false

MySQL query - completed in [159] milliseconds

Hotwire API query - completed in [529] milliseconds

11. Origin = “SJC”, destination = “JFK”, flightDate = “2011-06-30”. Set the pre-fetch to false

Flight query from cache - completed in [2] milliseconds

Hotel deals from cache - completed in [2] milliseconds

Execution & Performance Evaluation…continued

Conclusion

 Hazelcast as an in-memory data grid - distributes data across cheap,
commodity hardware with an open-source infrastructure

 Facilitates failover and scalability

 Disadvantage - technically not feasible to query using order by, group
by or database joins in a distributed caching infrastructure

 Well-suited for applications that query using simple SQL-predicates

 Open source - easy to code

References

 http://code.google.com/edu/parallel/dsd-tutorial.html

 http://net.pku.edu.cn/~course/cs501/2011/resource/2006-Book-
distributed%20systems%20principles%20and%20paradigms%202nd%20ed
ition.pdf

 http://developer.hotwire.com/apps/mykeys

 http://developer.hotwire.com/docs/read/Hotel_Deals_API

 http://api.hotwire.com/v1/deal/hotel?apikey=q9w8hq5ecs4ag7gfcyn7g78a
&limit=5&dest=NYC&distance=*~30&starrating=4~*&sort=price

 http://hc.apache.org/httpcomponents-client-ga/examples.html

 http://www.ibm.com/developerworks/library/x-javaxpathapi/index.html

 www.data.gov

http://code.google.com/edu/parallel/dsd-tutorial.html
http://code.google.com/edu/parallel/dsd-tutorial.html
http://code.google.com/edu/parallel/dsd-tutorial.html
http://code.google.com/edu/parallel/dsd-tutorial.html
http://net.pku.edu.cn/~course/cs501/2011/resource/2006-Book-distributed systems principles and paradigms 2nd edition.pdf
http://net.pku.edu.cn/~course/cs501/2011/resource/2006-Book-distributed systems principles and paradigms 2nd edition.pdf
http://net.pku.edu.cn/~course/cs501/2011/resource/2006-Book-distributed systems principles and paradigms 2nd edition.pdf
http://net.pku.edu.cn/~course/cs501/2011/resource/2006-Book-distributed systems principles and paradigms 2nd edition.pdf
http://net.pku.edu.cn/~course/cs501/2011/resource/2006-Book-distributed systems principles and paradigms 2nd edition.pdf
http://net.pku.edu.cn/~course/cs501/2011/resource/2006-Book-distributed systems principles and paradigms 2nd edition.pdf
http://developer.hotwire.com/apps/mykeys
http://developer.hotwire.com/apps/mykeys
http://developer.hotwire.com/docs/read/Hotel_Deals_API
http://developer.hotwire.com/docs/read/Hotel_Deals_API
http://developer.hotwire.com/docs/read/Hotel_Deals_API
http://api.hotwire.com/v1/deal/hotel?apikey=q9w8hq5ecs4ag7gfcyn7g78a&limit=5&dest=NYC&distance=*~30&starrating=4~*&sort=price
http://api.hotwire.com/v1/deal/hotel?apikey=q9w8hq5ecs4ag7gfcyn7g78a&limit=5&dest=NYC&distance=*~30&starrating=4~*&sort=price
http://api.hotwire.com/v1/deal/hotel?apikey=q9w8hq5ecs4ag7gfcyn7g78a&limit=5&dest=NYC&distance=*~30&starrating=4~*&sort=price
http://api.hotwire.com/v1/deal/hotel?apikey=q9w8hq5ecs4ag7gfcyn7g78a&limit=5&dest=NYC&distance=*~30&starrating=4~*&sort=price
http://hc.apache.org/httpcomponents-client-ga/examples.html
http://hc.apache.org/httpcomponents-client-ga/examples.html
http://hc.apache.org/httpcomponents-client-ga/examples.html
http://hc.apache.org/httpcomponents-client-ga/examples.html
http://hc.apache.org/httpcomponents-client-ga/examples.html
http://hc.apache.org/httpcomponents-client-ga/examples.html
http://hc.apache.org/httpcomponents-client-ga/examples.html
http://www.ibm.com/developerworks/library/x-javaxpathapi/index.html
http://www.ibm.com/developerworks/library/x-javaxpathapi/index.html
http://www.ibm.com/developerworks/library/x-javaxpathapi/index.html
http://www.ibm.com/developerworks/library/x-javaxpathapi/index.html
http://www.ibm.com/developerworks/library/x-javaxpathapi/index.html

