Phys 163; HW#8. Due Tues 10/31

- 1) Find the matrices Sx, Sy, and Sz for the spin-1 system. (They will be 3x3 matrices. Use the same procedure we used to find the 2x2 spin-1/2 matrices from section 4.4.)
- 2) Consider the state in problem 4.27.
- A) Solve for the normalization constant A.
- B) Find the expectation value $\langle S_x \rangle$ using matrix multiplication.
- C) Find the expectation value $\langle S_x \rangle$ by explicitly working out the probability of each outcome, and summing over all possibilities.
- D) Find the expectation value $\langle S_x \rangle$ by rewriting S_x in terms of raising and lowering operators S+ and S-, and writing the state in terms of χ + and χ -. (You know what the raising and lowering operators do to these states.)
- 3) Problem 4.30.
- 4) Use the results of problem 4.30 to solve the following problem:
- On a spin-1/2 particle, you make a measurement of Sz, and get a positive answer. Next, you measure the spin angular momentum component in a direction 45 degrees from the z-axis. What might you get and with what probabilities?
- Finally, compare your answers to the probabilities you would expect if you instead measured the spin angular momentum component in a direction 90 degrees from the z-axis. Does your 45-degree answer seem to split the difference, or does it seem strangely biased?