San José State University

Department of Mechanical and Aerospace Engineering

ME 30 Computer Applications

Lab Project 1:
Developing an Algorithm and Getting Started with Ch
Introduction

Two crucial steps in developing a computer based solution to any problem are, defining the problem and designing the solution algorithm. We will focus on two approaches to facilitate designing a solution algorithm in this laboratory session: pseudocode and flowcharting.
You will also be introduced to a nifty C interpreter called Ch and an integrated development environment called ChIDE (both of which were developed by Prof. Harry Cheng from UC Davis). Ch provides a ‘kinder and gentler’ start to learning how to program in C, rather than starting with a typical C compiler.

Objectives

Following completion of today’s lab, you should be able to:
· Explain what an algorithm is in the context of computer programming
· Define what is meant by the term ‘pseudocode’
· Describe the elements of and explain what a flowchart is

· Develop an algorithm with pseudocode
· Develop an algorithm with a flowchart

· Run a ‘desk check’ to verify the logic of an algorithm

· Use Ch as a calculator or command shell

· Use ChIDE to write and run C programs
Procedure

Download a copy of the Lab Report Template (lab_rpt_tpt.doc) and the Report Completion Checklist (CompletionChecklist.docx) from Desire2learn or the ME 30 website. Use the report template to record your answers to the lab exercises and write a reflective summary of the complete lab project. For each problem, write a brief but complete description of the problem, and then put your solution in the table cell below the description. Below the solution, show how you verified that the solution functions properly and meets the design requirements. Copy and paste additional table cells as needed to fill out your report. Use the Completion Checklist to help you you keep track of what needs to be completed before you submit the report. You do not need to submit the Checklist with your report.
Make sure that you fill out the cover page completely, before turning in your report (use the checklist to help you remember what needs to be done). Points will be deducted if the cover sheet is not completely filled out. Enter your last name, first initial, and project number in the labeled boxes in the header (top of the page at the right) by double-clicking on it and clicking on the appropriate cell in the table.
Under the section of the cover sheet labeled ‘Summary’, summarize the problem(s) you solved in the lab project. This summary must touch on the strategy you used as well as the methods you employed, and any observations or conclusions about what you learned from the laboratory. I recommend that you structure your summary into a minimum of three paragraphs. In the first paragraph discuss what you did. In the second paragraph discuss how you did it. In the third paragraph describe what you learned. The summary is perhaps the most important part of the lab, so do a good job on it. You will need to strike a balance between succinctness and completeness. Note that you are not limited to fitting the summary on the cover sheet. You can expand the summary to another sheet if needed. You can position your cursor on the lower border and drag it down if you need more room.
Save your work on your own storage device, or send it as an email to yourself before you leave the lab. The hard drives on the computers in the lab are frequently refreshed, so do not rely on them for saving your work from session to session.
Instructions for turning in your Lab Project report:
· Save your report using the following naming convention (all lower case):

lastname_firstnameinitials_sec_ _lab _report.doc

put your lab section number in the first box: Tues=2, Wed=3, Thurs=4, Fri=5
put the number of the lab project in the second box

so, if your name is John Smith, and you are in section 3, for lab 1 you must name your file:

smith_jo_sec_3_lab1_report.doc
· Upload your report and any related files to Desire2Learn under the corresponding Lab Project Dropbox before the deadline
· Turn in a hard copy of your report to your lab instructor at the beginning of next week’s lab session
References

SoftIntegration, Inc. website: http://www.softintegration.com/docs/ [Note: if you are interested in using Ch outside the lab, you can download the Ch 7.0 Student Version for free. Go to ‘Downloads’ on the SoftIntegration website and register to download your own copy.]
Whitfort , T. (2005). Desk Check Guide. Retrieved from http://webcache.googleusercontent.com/search?q=cache:yywZnvv9xAUJ:ironbark.bendigo.latrobe.edu.au/subjects/PE/2005s1/other_resources/desk_check_guide.html+&cd=2&hl=en&ct=clnk&gl=us
Laboratory Exercises

Follow the instructions below, and enter your work in the Lab Report Template. You may want to refer to your textbook or the handout from the ME 30 web page, Notes on Algorithms, Pseudocode, and Flowcharts (http://www.engr.sjsu.edu/bjfurman/courses/ME30/handouts.htm) to help you do problems
1 – 3.
1.
‘Desk checking’ an Algorithm
Before you jump in and begin writing program code in C (or any other language), you need to develop the logic of the program, i.e., proper steps that will give correct results or meaningful output under all possible inputs (expected and unexpected). Pseudocode and flowcharts are two tools you can use to help develop the logic of your algorithm or program. Once you have developed a draft of an algorithm, you should run through what is called a ‘desk check’ or ‘code trace’, which is a manual recording of the values of variables, results of test conditions, and inputs and outputs to verify that the algorithm gives the results you expect under all possible inputs. I say ‘draft’ of your algorithm, because it is very likely that your first thoughts for the algorithm may not work completely (or at all). You can save yourself much time and effort on the road toward getting a solid working program by desk checking the logic of your algorithms BEFORE you start coding.
The desk check consists of building a table that has columns for:

a. The line number of the pseudocode line that you are considering as you work through the algorithm

b. Columns for each variable in the program (put them in alphabetical order)
c. A column for evaluating the result of conditions (TRUE or FALSE)
d. A column for inputs

e. A column for outputs

Work through the algorithm line by line, recording changes in the table for values of variables, results of conditions, inputs, and outputs. Verify that your algorithm gives correct results for all possible inputs. If not, fix your algorithm, and repeat your check until you have confidence that it will function properly.
1.1
Consider the following pseudocode for an algorithm to calculate the factorial of an integer (e.g., 5!) entered by a user:

1. Start

2. Declare and initialize variables: prod, num, i

3. Prompt user to enter num

4. Get num from user

5. prod (num

6. for each value of i from 1 to num-1

7. prod (prod * (num - i)

8. endfor

9. Display prod

10. Stop
[Note: the symbol, (, indicates the assignment operation (right side of the symbol is assigned to the variable on the left side. In C, the assignment operator is the single equals sign (=). I have not used that here, because it is easy for novice C programmers to get confused between assignment and a test for equality, which is the double-equals sign (==). More on this later.]
Let’s do a desk check on this algorithm, assuming that the user enters the value of 5 when prompted to enter a value for the variable, num.

	Line
	i
	num
	prod
	Condition
	Input
	Output

	1
	
	
	
	
	
	

	2
	0
	0
	0
	
	
	

	3
	
	
	
	
	
	“Enter num”

	4
	
	5
	
	
	num(5
	

	5
	
	
	5
	
	
	

	6
	1
	
	
	1<4 ? is TRUE
	
	

	7
	
	
	5*4==20
	
	
	

	8
	1+1==2
	
	
	
	
	

	6
	
	
	
	2<4 ? is TRUE
	
	

	7
	
	
	20*3==60
	
	
	

	8
	2+1==3
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

We are not done yet. Now it is your turn to follow the pattern and fill out the rest of the table. Copy the table to your answer sheet, fill in the remaining lines, and answer the questions below:
1.1.1) What value does the algorithm output? Is it correct?
1.1.2) Comment on the robustness of this algorithm. Does it handle all possible inputs correctly? Suppose the user enters 1 for num? Does the algorithm give a correct result? Start a new desk check table and check your intuition. How about if the user enters 0? Does the algorithm give a correct result? Start a new desk check table, and check your intuition.
[Optional extra credit: Suppose the user enters an ampersand (&) by mistake (intended to be a 7, but had the shift key down). What value will the algorithm produce?]
1.1.3) If the algorithm does not handle the cases listed in 1.1.2, modify the pseudocode so that it will. Verify with a desk check table.

1.2
Create a flowchart for an algorithm that will handle the cases from 1.1.2. Use Visio or the drawing tools from MS Word or Power Point to draw the flowchart. Follow the guidelines for drawing flow chart listed in Notes on Algorithms, Pseudocode, and Flowcharts. Pay attention to the example shown, and make your flowchart look similarly.
Developing a Procedural Algorithm
2.1
A utility company charges $0.10 per kWhr for residential electricity usage below baseline (baseline is kind of like an average value for a residential user) and $0.15 per kWhr for usage above baseline. Assume that the baseline amount is 150 kWh for Residential 1 level customers and 250 kWh for Residential 2 level customers. Write a procedural algorithm in pseudocode for determining how much will be owed at the end of a month’s worth of electric use for a residential customer, which could be level 1 or level 2. Follow the steps described in your reading for this week (p. 1-3): http://www.framingham.edu/~dkeil/keil-johnson.pdf
Statement of the problem

Inputs (what information is needed from the user to get the desired results)
Outputs (what the program will out put)
Algorithm design

Desk check

Use the pseudocode language constructs from the handout, Notes on Algorithms, Pseudocode, and Flowcharts, available on the ME 30 website to write the algorithm.
2.2
Create a flowchart for the algorithm from 2.1. Use Visio or the drawing tools from MS Word or Power Point to draw the flowchart. Follow the guidelines for drawing flow chart listed in Notes on Algorithms, Pseudocode, and Flowcharts.
[image: image1.png]

3.
Getting Started with Ch and ChIDE

3.1
Open ChIDE by double-clicking on the ChIDE icon:

[image: image2.png]End)s

3.2
Open Ch by double-clicking on the Ch icon:

3.3
Get familiar with the ability of Ch to interactively evaluate C expressions, statements, and functions.

Use the Ch shell window to evaluate the following expressions (type them, and hit ENTER). Copy the answer table to your report template file. Observe carefully the results of the expressions, and write about what you observed in the appropriate boxes. Delete any entries that are already there before you add your comments. Feel free to expand the table cells as needed to for your comments. Include the filled out table in your report.
	
	Expression
	Result
	Comments and observations

	3.3.1
	1 + 2
	
	

	3.3.2
	1 + 2;
	
	Any difference between the results for 3.3.1 and 3.3.2? See note 1.

	3.3.3
	2+3*5+3;
	
	Comment on order of arithmetic operations. Which has precedence?

	3.3.4
	2*2*2;
	
	

	3.3.5
	pow(2,3);
	
	Compare to the result from 3.3.4, and comment on how the pow() function works. Try out pow() with a few other arguments.

	3.3.6
	5 < 7;
	
	Try both 3.3.6 and 3.3.7 before you comment on the results, then

	3.3.7
	5 > 7;
	
	explain the results in terms of the operations being performed

	3.3.8
	double pi = 3.14159;
sin(30*pi/180);
	
	Note there is a space between ‘double’ and pi and between pi and 3.14159. Type the double pi line first, hit enter, then type the sin() line.

	3.3.9
	log(10);
	
	What is the log() function?

	3.3.10
	printf("ME 30 rocks!");
	
	

	3.3.11
	printf("ME %d rocks!", 30);
	
	Any difference? Suppose you used 20 instead of 30?

	3.3.12
	printf("ME %d rocks!", 5*6);
	
	(See Note 2 (below) first)

	3.3.13
	printf("ME %d rocks!", 15<<1);
	
	What is the same and different about 3.3.10 – 3.3.13?

	3.3.14
	printf("\a”);
	
	

	3.3.15
	printf("%4b",8);
	
	What is printed? What happens if you put %4d instead of %4b?

	3.3.16
	Change directories(if needed) to get to: Ch/demos/lib/libch/plot/ref
then type:
contourLevels_2.ch
and hit Enter
	
	You can move around in the PC’s directory structure in the Ch shell using the cd command. cd .. will move you up one level higher in the directory structure. The command dir will display the files and directories (folders) at the current directory level. The command cd name , where name is the name of a directory, will move you to that directory level. Once you execute contourLevels_2.ch, what happens when you hold down the left mouse button and move the mouse around in the window that opens?

	3.3.17
	type contourLevels_2.ch
	
	Enter the expression (including the word ‘type’)

	3.3.18
	dir
	Describe the results of this command. See note 3.

Notes
1. The Ch shell will execute C expressions without a terminating semicolon. I highly recommend that you discipline yourself to include a terminating semicolon, because when you get to writing C programs, you MUST terminate statements with a semicolon, or else you will get an error during compilation.
2. The Ch shell buffers what you enter at the command line. You can save lots of typing by recovering previous typing by hitting the up-arrow ((). Each time you hit the up-arrow, you go back one entry in the buffer. Hitting the down arrow moves you ahead in the buffer. You can edit the command line by moving the cursor using the left and right arrows, and then using the delete or backspace keys. You can also copy from the command line by clicking and dragging over a section of text, then pressing the right mouse button (or using the Edit command menu from the upper left icon in the Ch shell window). You can paste in a similar manner. Experiment with this.
3. Ch understands Unix commands and shell programs. We probably won’t talk about these so much, but you can do lots of things using shell commands. dir is a shell command.
Page 4 of 5

BJ Furman | ME 30 Computer Applications | Lab1_algorithms.doc | 06AUG2012

